Linear feature extractors based on mutual information

نویسندگان

  • Kurt D. Bollacker
  • Joydeep Ghosh
چکیده

This paper presents and evaluates two linear feature extractors based on mutual information. These feature extractors consider general dependencies between features and class labels, as opposed to well known linear methods such as PCA which does not consider class labels and LDA, which uses only simple low order dependencies. As evidenced by several simulations on high dimensional data sets, the proposed techniques provide superior feature extraction and better dimensionality reduction while having similar computational requirements .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutual Information Feature Extractors for Neural Classiiers

This paper presents and evaluates two linear feature extractors based on mutual information. These feature extractors consider general dependencies between features and class labels, as opposed to statistical techniques such as PCA which does not consider class labels and LDA, which uses only simple rst order dependencies. As evidenced by several simulations on high dimensional data sets, the p...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

On Classification of Bivariate Distributions Based on Mutual Information

Among all measures of independence between random variables, mutual information is the only one that is based on information theory. Mutual information takes into account of all kinds of dependencies between variables, i.e., both the linear and non-linear dependencies. In this paper we have classified some well-known bivariate distributions into two classes of distributions based on their mutua...

متن کامل

Modeling and design of a diagnostic and screening algorithm based on hybrid feature selection-enabled linear support vector machine classification

Background: In the current study, a hybrid feature selection approach involving filter and wrapper methods is applied to some bioscience databases with various records, attributes and classes; hence, this strategy enjoys the advantages of both methods such as fast execution, generality, and accuracy. The purpose is diagnosing of the disease status and estimating of the patient survival. Method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996